砂場

ちょっときれいにします。

砂場/第二階層

数式のテスト

Biot–Savart law

$$\boldsymbol{H} =\int_V \frac{\boldsymbol{j}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{4 \pi |\boldsymbol{r} - \boldsymbol{r}'|^3} d^3 \boldsymbol{r}'$$

Sample

$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$

$$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$

$$\displaystyle {1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots }= \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.$$


最終更新: 2019-11-09 01:28:31 +0900

[Top]

This page is generated by sinanoki.